Genome-wide RNA-seq of iPSC-derived motor neurons indicates selective cytoskeletal perturbation in Brown–Vialetto disease that is partially rescued by riboflavin

نویسندگان

  • Federica Rizzo
  • Agnese Ramirez
  • Claudia Compagnucci
  • Sabrina Salani
  • Valentina Melzi
  • Andreina Bordoni
  • Francesco Fortunato
  • Alessia Niceforo
  • Nereo Bresolin
  • Giacomo P. Comi
  • Enrico Bertini
  • Monica Nizzardo
  • Stefania Corti
چکیده

Riboflavin is essential in numerous cellular oxidation/reduction reactions but is not synthesized by mammalian cells. Riboflavin absorption occurs through the human riboflavin transporters RFVT1 and RFVT3 in the intestine and RFVT2 in the brain. Mutations in these genes are causative for the Brown-Vialetto-Van Laere (BVVL), childhood-onset syndrome characterized by a variety of cranial nerve palsies as well as by spinal cord motor neuron (MN) degeneration. Why mutations in RFVTs result in a neural cell-selective disorder is unclear. As a novel tool to gain insights into the pathomechanisms underlying the disease, we generated MNs from induced pluripotent stem cells (iPSCs) derived from BVVL patients as an in vitro disease model. BVVL-MNs explained a reduction in axon elongation, partially improved by riboflavin supplementation. RNA sequencing profiles and protein studies of the cytoskeletal structures showed a perturbation in the neurofilament composition in BVVL-MNs. Furthermore, exploring the autophagy-lysosome pathway, we observed a reduced autophagic/mitophagic flux in patient MNs. These features represent emerging pathogenetic mechanisms in BVVL-associated neurodegeneration, partially rescued by riboflavin supplementation. Our data showed that this therapeutic strategy could have some limits in rescuing all of the disease features, suggesting the need to develop complementary novel therapeutic strategies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exome sequencing reveals riboflavin transporter mutations as a cause of motor neuron disease.

Brown-Vialetto-Van Laere syndrome was first described in 1894 as a rare neurodegenerative disorder characterized by progressive sensorineural deafness in combination with childhood amyotrophic lateral sclerosis. Mutations in the gene, SLC52A3 (formerly C20orf54), one of three known riboflavin transporter genes, have recently been shown to underlie a number of severe cases of Brown-Vialetto-Van ...

متن کامل

Gene expression analysis of human induced pluripotent stem cell-derived neurons carrying copy number variants of chromosome 15q11-q13.1

BACKGROUND Duplications of the chromosome 15q11-q13.1 region are associated with an estimated 1 to 3% of all autism cases, making this copy number variation (CNV) one of the most frequent chromosome abnormalities associated with autism spectrum disorder (ASD). Several genes located within the 15q11-q13.1 duplication region including ubiquitin protein ligase E3A (UBE3A), the gene disrupted in An...

متن کامل

Madras motor neuron disease (MMND) is distinct from the riboflavin transporter genetic defects that cause Brown–Vialetto–Van Laere syndrome

INTRODUCTION Madras motor neuron disease (MMND), MMND variant (MMNDV) and Familial MMND (FMMND) have a unique geographic distribution predominantly reported from Southern India. The characteristic features are onset in young, weakness and wasting of limbs, multiple lower cranial nerve palsies and sensorineural hearing loss. There is a considerable overlap in the phenotype of MMND with Brown-Via...

متن کامل

Clinical, pathological and functional characterization of riboflavin-responsive neuropathy

Brown-Vialetto-Van Laere syndrome represents a phenotypic spectrum of motor, sensory, and cranial nerve neuropathy, often with ataxia, optic atrophy and respiratory problems leading to ventilator-dependence. Loss-of-function mutations in two riboflavin transporter genes, SLC52A2 and SLC52A3, have recently been linked to Brown-Vialetto-Van Laere syndrome. However, the genetic frequency, neuropat...

متن کامل

SLC52A3, A Brown-Vialetto-van Laere syndrome candidate gene is essential for mouse development, but dispensable for motor neuron differentiation.

Riboflavin, also known as vitamin B2, is essential for cellular reduction-oxidation reactions, but is not readily synthesized by mammalian cells. It has been proposed that riboflavin absorption occurs through solute carrier family 52 members (SLC52) A1, A2 and A3. These transporters are also candidate genes for the childhood onset-neural degenerative syndrome Brown-Vialetto-Van Laere (BVVL). Al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017